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Abstract—Copper ion-catalyzed regioselective introduction of active methylene groups into the c-position of piperidine skeleton was
exploited. In the case of using chiral ligand as an additive, this reaction proceeded with moderate enantioselectivities. This method
was applied to the synthesis of (�)-cincholoiponic acid from N-methoxycarbonylpiperidine.
� 2006 Elsevier Ltd. All rights reserved.
Carbon–carbon bond forming reactions at the a-posi-
tion of cyclic amines 1 through iminium ion intermedi-
ates A to afford a-alkylated cyclic amines 3 have
attracted a lot of interest (Eq. 1) since they provide
one of the simplest routes for the formation of 3, which
are often found as an important moiety of naturally
occurring nitrogen heterocycles.1 We have already
exploited electrochemical oxidation method through
a-methoxylated piperidine 2 for the route.2
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On the other hand, there have been only two methods
for carbon–carbon bond forming reaction at the c-posi-
tion of 1, though c-substituted piperidines are also
worthwhile as synthetic intermediates for a variety of
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natural products and drug candidates.3 One is conjugate
addition of some aryl groups to b,c-didehydro-a-oxopi-
peridines,3e,g,i and the other is introduction of some
nucleophiles to pyridinium salts.4–6 These methods,
however, are not applicable to piperidine derivatives
possessing functionalized alkyl group at the c-position,
such as (�)-cincholoiponic acid (cis-1) (Fig. 1),7 which
is a structural moiety in a variety of alkaloids, and any
asymmetric alkylation has not been reported.8

This letter presents copper ion-catalyzed coupling reac-
tion of a-methoxylated b,c-didehydropiperidines 6 with
active methylene compounds 7 to afford c -substituted
piperidines 9 without the formation of undesired regio-
isomers 8 (Eq. 2)9,10 and its asymmetric application
leading to formal synthesis of optically active cis-1 with
moderate enantioselectivity. The key starting com-
pounds 6a,b (a;11 R = H, b;12 R = Et) in Eq. 2 are
known to be prepared by electrochemical oxidation of
N
H

cis-1

Figure 1.
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N-methoxycarbonylpiperidine (4) through a-methoxy-
lated piperidine 5.13
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With 6a,b, we first tried the coupling reaction of 6a,b
with dimethyl malonate (7p), methyl acetoacetate (7q)
and 1,3-diketones 7r–t and found that the coupling reac-
tion proceeded in the presence of Cu(OTf)2 (5 mol %) in
THF at room temperature for 12 h to afford a-substi-
tuted piperidines 8ap–br and/or selectively c-substituted
piperidines 9aq–bt, the ratio being dependent on the
structures of 6 and of nucleophiles 7. The results are
shown in Table 1.

The observed regioselectivity (8/9) was noticeable. Di-
methyl malonate (7p) as a nucleophile afforded a-substi-
tuted piperidines (8ap and 8bp) exclusively for 6a (entry
1) and mainly for 6b (entry 2), whereas the use of methyl
acetoacetate (7q) decreased the ratio of 8/9 for 6a (entry
3) and eventually resulted in the formation of only 9bq
for 6b (entry 4). Also a predominant formation of
9br–bt was observed in the reaction of 6b with 1,3-dike-
tones 7r–t (entries 5–7), though the yields of the prod-
ucts were in general lower than those in cases using
malonates and acetoacetates.14

In order to elucidate the mechanism for the high regiose-
lectivity observed in the reaction of 6b and 7q (entry 4),
the reaction was carried out at 0 �C to afford a mixture
of 8bq and 9bq with a ratio of 77/23 in low yield (entry
8), whereas the treatment of a mixture of 8bq and 9bq
(8bq/9bq = 77/23) with Cu(OTf)2 in THF at room
Table 1. The reaction of 6a,b with various active methylene compounds 7p–

Entry Substrate Active methylene compound

6a,b R1 7p–t R2 R3

1 6a H 7p OMe OM
2 6b Et 7p OMe OM
3 6a 7q Me OM
4 6b 7q Me OM
5 6b 7r Me Me
6 6b 7s Me Ph
7 6b 7t Ph Ph
8c 6b 7q Me OM

a 6a,b (0.5 mmol), 7p–t (0.75 mmol), Cu(OTf)2 (0.025 mmol) in THF (2 mL)
b A mixture of diastereomers was obtained.
c At 0 �C.
temperature resulted in an exclusive formation of 9bq
(Eq. 3).
The selectivity can be explained in terms of the steric
factor of both substrates and active methylene com-
pounds as described later.

After finding the best conditions that c-substituted
piperidine 9bq was selectively formed, we then tried
asymmetric reaction of 6b with 7q in the presence of
Cu(OTf)2 and chiral bisoxazoline ligand L.15 The result
was interesting since a mixture of diastereomers 9bq*
was generated in a ratio of 56/44, each of which had
modest optical purity (43–44% ee) (Eq. 4). However,
asymmetric reaction was not observed in MeCN in place
of THF as a solvent (Eq. 4).

Further information to support the reaction mechanism
was obtained when racemic a-substituted piperidine 8bq
was treated with Cu(OTf)2 in the presence of chiral
ligand L in THF at room temperature. The product
was 9bq* in a quantitative yield, and each of the diaste-
reomers was optically active (Eq. 5).
ta

Product 8,9 Ratio

Yield (%) 8/9

e 8ap 68 9ap 0 100/0
e 8bp 70 9bp 11 89/11
e 8aqb 41 9aqb 21 66/34
e 8bq 0 9bqb 85 0/100

8br 12 9br 37 25/75
8bs 0 9bsb 55 0/100
8bt 0 9bt 48 0/100

e 8bqb 22 9bqb 6 77/23

at rt for 12 h.
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These results strongly suggest that 8bq is a kinetically
controlled product, while 9bq is a thermodynamically
stable product, and the rearrangement of 8bq into
9bq* proceeds through an iminium ion Ab with an inter-
molecular mechanism (Scheme 1). The observed regio-
selectivity may be determined by the steric factor of
9bq*
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Scheme 1.
both b-ethyl substituent of 6b and nucleophiles 7p–t,
though the effect of the reactivity of nucleophiles on
the regioselectivity is not ruled out.

Finally, transformation of optically active 9bq* into
cincholoiponic acid methyl ester HCl salt (cis-12)16

was achieved by the method described in Eq. 6, and
the absolute configuration at the c-position of cis-12,
that is, the c-position of 9bq*, was determined to be S
by the comparison of the product cis-12 with the authen-
tic sample.7a It is known that the cis-12 is easily trans-
formed into (�)-cincholoiponic acid (cis-1).7a

In summary, we present a facile method for selective
introduction of active methylene groups into the c-posi-
tion of piperidine skeleton and its application to the for-
mal synthesis of (�)-cincholoiponic acid (cis-1).
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Further studies on mechanistic aspects and the improve-
ment of % ee are currently underway.
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